The Metric System

Plymouth State University

I. INTRODUCTION

The metric system was devised as a system that would standardize all measurements and facilitate conversions. Although it is somewhat unfamiliar to many Americans, the metric system is arguably easier to understand and use than the American system! Each measurement (i.e., length, mass) has only one base unit (as opposed to the American system of length, which has inches, feet, yards, etc.) and conversions are done using multiples of 10 . Due to its ease of use and standardization of units, the various fields of science universally use the Metric system, and it is therefore vitally important for any student of science to be familiar and comfortable with the metric system. Incidentally, nearly every country on earth except the United States used the metric system as its primary system of measurement!

II. BASE UNITS

The metric system provides only one base unit for each type of measurement. Below is a table comparing the base units of length, mass, volume, and temperature for the Metric system versus the American system:

BASE UNITS				
Metric	American System			
Measurement	Name of Unit		Symbol	
Length	meter	m	Name of Unit(s)	
Mass	gram	g	inch, foot, yard, mile	
Volume	liter	L	ounce, pound, ton	
Temperature	kelvin / Celcius	$\mathrm{K},{ }^{\circ} \mathrm{C}$	ounce, pint, gallon	

III. PREFIXES AND POWERS OF TEN

Scientists often need to measure things that are much smaller or much larger than the base unit (for example, the American system uses feet and miles to measure distance). The metric system thus provides a way to multiply or divide the base units by powers of ten. Each power of ten has a name that is a prefix to the base unit. The number line below illustrates this "powers of ten" concept:

To use the number line:

1. Count the number of places on the line from where you are starting to where you are finishing.
2. Move the decimal in the number you are converting that number of places in the same direction.

Example: Convert 0.035 decimeters (dm) to millimeters (mm)
Solution: The prefix "milli" is two places (two powers of ten) to the right of the prefix "deci." Move the decimal two places to the right.

Answer: $0.035 \mathrm{dm}=3.5 \mathrm{~mm}$

Below is a table of the more common powers of ten and prefixes used in the metric system:

Metric System Prefixes						
	Prefix	Abbrev.	Know?	Power of ten	Decimal	Examples
	nano-	n	yes	10^{-9} (one-billionth)	0.000000001	nanometer (nm)
$\begin{aligned} & \mathscr{\sim} \\ & \tilde{\sim} \end{aligned}$	micro-	μ		10^{-6} (one-millionth)	0.000001	microsecond ($\mu \mathrm{s}$)
$\begin{aligned} & \text { 莀 } \\ & \text { n } \end{aligned}$	milli-	m	yes	10^{-3} (one-thousandth)	0.001	millimeter (mm) milliliter (mL)
$\stackrel{\square}{\square}$	centi-	c	yes	10^{-2} (one hundredth)	0.01	centimeter (cm)
$\underset{\sim}{\tilde{n}}$	deci-	d		10^{-1}	0.1	deciliter (dL) decibel (dB)
base unit						
	Deca-	dK		10^{1}	10	not widely used
	kilo-	k	yes	10^{3}	1,000	kilogram (kg) kilometer (km)
	Mega-	M		10^{6}	1,000,000	Megawatts (MW) Megabyte (MB)
	Giga-	G		10^{9}	1,000,000,000	Gigawatts (GW)

Knowing the prefixes and the powers of ten associated with them allows you to quickly convert between units. You should become familiar with all of these prefixes, and you MUST know the four (nano-, milli-, centi-, kilo-) noted in the table.

To use the prefixes:

- For units larger than the base, use the formula: 1 prefix-unit = power-of-ten base units

Examples
1 kilometer $=10^{3}$ meters $=1000$ meters $\quad(1 \mathrm{~km}=1000 \mathrm{~m})$
1 Megabyte $=10^{6}$ bytes $=1,000,000$ bytes $(1 \mathrm{MB}=1,000,000 \mathrm{~B})$

- For units smaller than the base, use the formula: 1 base unit = inverse power-of-ten prefix-unit

Examples

$$
\begin{array}{ll}
1 \text { liter }=10^{3} \text { milliliters }=1000 \text { milliliters } & (1 \mathrm{~L}=1000 \mathrm{~mL}) \\
1 \text { gram }=10^{2} \text { centigrams }=100 \text { centigrams } & (1 \mathrm{~g}=100 \mathrm{cg})
\end{array}
$$

Practice (answers are at the end of the worksheet)

1. Convert 2.1 grams to milligrams
2. Convert 30.4 microliters to liters
3. What is the symbol for the unit millimeter?
4. How many grams are in one kilogram?
5. How many nanometers are in one meter?

IV ESTIMATING AND USING METRIC UNITS

If I tell you I am 6 feet, 2 inches tall and weigh 220 pounds, you know approximately how large I am simply because you are familiar with these units. However, if I tell you I am 1.9 meters tall and weigh100 kilograms, you are unsure how large I am only because you are not familiar with the units (incidentally, 1.9 m and 100 kg is the same as 6 feet 2 inches and 220 pounds). The best way to become familiar with the metric system is to use it, and the best way to begin is to understand the approximate sizes of the various units. To help you get started, below are some conversions between common American system and Metric system units.

COMMON METRIC UNITS AND AMERICAN EQUIVALENTS
Length

American Unit	Metric Unit	Conversion
Fractions of an inch	millimeter (mm)	1 inch $=25.4 \mathrm{~mm}$
Inch	centimeter (cm)	1 inch $=2.54 \mathrm{~cm}$
Foot $/$ Yard	meter (m)	$3 \mathrm{ft}=1 \mathrm{y}=0.914 \mathrm{~m}(1.1 \mathrm{yd}=1 \mathrm{~m})$
Mile	kilometer (km)	$1 \mathrm{mile}=1.61 \mathrm{~km}$

Mass		
American Unit	Metric Unit	Conversion
Fractions of an ounce	milligram (mg)	$1 \mathrm{oz}=28,350 \mathrm{mg}$
ounce	gram (g)	$1 \mathrm{oz}=28.35 \mathrm{~g}$
pound	kilogram (kg)	$1 \mathrm{lb}=0.454 \mathrm{~kg}(2.2 \mathrm{lb}=1 \mathrm{~kg})$

Volume		
American Unit	Metric Unit	Conversion
fluid ounce	milliliter (mL)	$1 \mathrm{fl} \mathrm{oz}=29.6 \mathrm{~mL}$
pint	milliliter (mL)	1 pint $=473 \mathrm{~mL}$
quart	liter (L)	1 quart $=0.94625 \mathrm{~L}$
gallon	liter (L)	1 gallon $=3.785 \mathrm{~L}$

Examples: For each of the following, what metric unit would be best to use to measure:

1. the distance from Concord to Boston? (km)
2. the width of a sheet of paper? (cm)
3. the volume of soda in a small bottle? (mL)
4. the thickness of a sheet of paper? (mm)
5. the mass of apples bought in a store? (kg)
6. the mass of a few pieces of sand? (mg)

Practice (answers are at the end of the worksheet)
For each of the following, what metric unit would be best to use to measure:
6. The volume of a raindrop?
7. The volume of water in an aquarium?
8. The height of an ant?
9. The height of a building?
10. The mass of a small steak?
11. The mass of a cow?

V. COMBINED UNITS

A variety of quantities are measured in units that are a combination of other units. A very common example is speed (or velocity), which is a distance per a time (i.e. miles per hour). You should become familiar with these combined units and the quantities they are used to measure:

	COMBINED UNITS	
Quantity	What is measured?	Metric Units
Speed / Velocity	distance per time	$\frac{\mathrm{m}}{\mathrm{s}}, \frac{\mathrm{km}}{\mathrm{hr}}$
Density	mass per volume	$\frac{\mathrm{g}}{\mathrm{L}}, \frac{\mathrm{g}}{\mathrm{cm}^{3}}$
Concentration	number of things per volume	$\mathrm{M}=\frac{\mathrm{moles}}{\mathrm{L}}$
Energy	mass, distance, and time	$\mathrm{J}=\mathrm{kg} \frac{\mathrm{m}^{2}}{\mathrm{~s}^{2}}$

* note: Often when a unit is on the bottom of the fraction, it will be written as unit ${ }^{-1}$. Just remember that $\quad x^{-1}=\frac{1}{x} \quad$ so, for example, $m \cdot s^{-1}=\frac{m}{s}$.

VI.. ANSWERS TO PRACTICE QUESTIONS

1. 2,100 milligrams
2. 0.0000304 liters
3. mm
4. $10^{3}=1,000$
5. $10^{9}=1,000,000,000$
6. milliliters (mL)
7. liters (L)
8. millimeters (mm)
9. meters (m)
10. grams (g)
11. kilograms (kg)

MORE HELP

There are a number of useful sites on the worldwide web that can help you learn the metric system. A few useful sites are:
http://www.austincc.edu/nrgtutor/Units/untut200.htm
http://www.learnchem.net/tutorials/mathb.shtml
http://www.tfhrc.gov/qkref/convtabl.htm

